Metadata filtering
In addition to providing an input vector to your query, you can also filter by vector metadata associated with every vector. Query results only include vectors that match filter
criteria, meaning that filter
is applied first, and topK
results are taken from the filtered set.
By using metadata filtering to limit the scope of a query, you can filter by specific customer IDs, tenant, product category or any other metadata you associate with your vectors.
Optional filter
property on query()
method specifies metadata filter:
Operator | Description |
---|---|
$eq | Equals |
$ne | Not equals |
filter
must be non-empty object whose compact JSON representation must be less than 2048 bytes.filter
object keys cannot be empty, contain" | .
(dot is reserved for nesting), start with$
, or be longer than 512 characters.filter
object non-nested values can bestring
,number
,boolean
, ornull
values.
Both namespaces and metadata filtering narrow the vector search space for a query. Consider the following when evaluating both filter types:
- A namespace filter is applied before metadata filter(s).
- A vector can only be part of a single namespace with the documented limits. Vector metadata can contain multiple key-value pairs up to metadata per vector limits. Metadata values support different types (
string
,boolean
, and others), therefore offering more flexibility.
With the following index definition:
Create metadata indexes:
Metadata can be added when inserting or upserting vectors.
Use the query()
method:
Results without metadata filtering:
The same query()
method with a filter
property supports metadata filtering.
Results with metadata filtering:
- As of now, metadata indexes need to be created for Vectorize indexes before vectors can be inserted to support metadata filtering.
- Only indexes created on or after 2023-12-06 support metadata filtering. Previously created indexes cannot be migrated to support metadata filtering.